cyclic redundancy code - definitie. Wat is cyclic redundancy code
Diclib.com
Woordenboek ChatGPT
Voer een woord of zin in in een taal naar keuze 👆
Taal:

Vertaling en analyse van woorden door kunstmatige intelligentie ChatGPT

Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:

  • hoe het woord wordt gebruikt
  • gebruiksfrequentie
  • het wordt vaker gebruikt in mondelinge of schriftelijke toespraken
  • opties voor woordvertaling
  • Gebruiksvoorbeelden (meerdere zinnen met vertaling)
  • etymologie

Wat (wie) is cyclic redundancy code - definitie

TYPE OF HASH FUNCTION USED TO DETECT ERRORS IN DATA STORAGE OR TRANSMISSION
Cyclic Redundancy Check; FCS-32; Cyclic redundancy code; CRC16; Crc64; Crc32 mpeg2; Crc16; Cyclic redundancy checks; CRC-24; CRC-16; CRC-8; CRC-64; Cyclical redundancy checking; CRC-CCITT; CRC-12; Crc32c; CRC32c; CRC8; Cyclic redundancy; Cyclic redundancy checksum; CRC-32C; CRC-32K; CRC check; CRC Values; Polynomial representations of cyclic redundancy checks; Polynomial CRC representations; List of CRC polynomials

cyclic redundancy code         
cyclic redundancy check         
<algorithm> (CRC or "cyclic redundancy code") A number derived from, and stored or transmitted with, a block of data in order to detect corruption. By recalculating the CRC and comparing it to the value originally transmitted, the receiver can detect some types of transmission errors. A CRC is more complicated than a checksum. It is calculated using division either using shifts and exclusive ORs or table lookup (modulo 256 or 65536). The CRC is "redundant" in that it adds no information. A single corrupted bit in the data will result in a one bit change in the calculated CRC but multiple corrupted bits may cancel each other out. CRCs treat blocks of input bits as coefficient-sets for polynomials. E.g., binary 10100000 implies the polynomial: 1*x^7 + 0*x^6 + 1*x^5 + 0*x^4 + 0*x^3 + 0*x^2 + 0*x^1 + 0*x^0. This is the "message polynomial". A second polynomial, with constant coefficients, is called the "generator polynomial". This is divided into the message polynomial, giving a quotient and remainder. The coefficients of the remainder form the bits of the final CRC. So, an order-33 generator polynomial is necessary to generate a 32-bit CRC. The exact bit-set used for the generator polynomial will naturally affect the CRC that is computed. Most CRC implementations seem to operate 8 bits at a time by building a table of 256 entries, representing all 256 possible 8-bit byte combinations, and determining the effect that each byte will have. CRCs are then computed using an input byte to select a 16- or 32-bit value from the table. This value is then used to update the CRC. Ethernet packets have a 32-bit CRC. Many disk formats include a CRC at some level. (1997-08-02)
Cyclic redundancy check         
A cyclic redundancy check (CRC) is an error-detecting code commonly used in digital networks and storage devices to detect accidental changes to digital data. Blocks of data entering these systems get a short check value attached, based on the remainder of a polynomial division of their contents.

Wikipedia

Cyclic redundancy check

A cyclic redundancy check (CRC) is an error-detecting code commonly used in digital networks and storage devices to detect accidental changes to digital data. Blocks of data entering these systems get a short check value attached, based on the remainder of a polynomial division of their contents. On retrieval, the calculation is repeated and, in the event the check values do not match, corrective action can be taken against data corruption. CRCs can be used for error correction (see bitfilters).

CRCs are so called because the check (data verification) value is a redundancy (it expands the message without adding information) and the algorithm is based on cyclic codes. CRCs are popular because they are simple to implement in binary hardware, easy to analyze mathematically, and particularly good at detecting common errors caused by noise in transmission channels. Because the check value has a fixed length, the function that generates it is occasionally used as a hash function.